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ABSTRACT. In this paper we develop a method for calculating the component of the microwave
anisotropy around cosmic string loops due to their rapidly changing gravitational fields. The method
is only valid for impact parameters from the string much smaller than the horison size at the time
the photon passes the string. The methods developed allows one to calculate the temperature pattern
around arbstrary string configurations numerically in terms of one dimensional integrals. This method
is applied to temperature jump across a string, confirming and extending previous work. It is also
applied to cusps and kinks on strings, and to determining the temperature pattern far from a string
loop. The temperature pattern around a few loop configurations is explicitly calculated. The fractional
temperature deviation near the string is typically 5-10 Gu/c?. Very large anisotropies are produced
near cusps and kinks. These large anisotropies only occur over a relatively sumlilfangminrmiea on
the sky. Comparison with the work of Brandenberger, Albrecht, and Turck incpamvebthay tHex have
overestimated the MBR anisotropy from gravitational radiation emitted from loops.

I. INTRODUCTION

Recently much attention has been paid to the possibility that linelike topological de-
fects called cosmic strings could be the cause of inhomogeneities in the universe (see Vilenkin
1985 for a review). These topological defects are produced naturally in some, but not all,
gauge theories as one goes from very high temperatures to very low temperatures. Given a
very homogeneous universe at some very early time and the subsequent production of strings
in a phase transition one would naturally produce nonlinear inhomogeneities in any compo-
nent whose effective sound speed fell below some critical value. This, in our universe, could
produce inhomogeneities in the baryonic component and in any sufficiently cold nonbaryonic
component. If the strings only interact gravitationally with the matter then the statistical
properties of the structure produced will depend only on their fixed mass per unit length,
u. Additional uncertainties come from our ignorance about the contents of the universe (i.e.
possible non-baryonic matter) as well as the curvature of the universe (i.e. {3p). To this we
must add our ignorance about the behavior of string networks, nonlinear gravitational clus-
tering, baryonic dissipation, primordial star formation, etc. Thus, as with any theory of the
formation of structure, there are large uncertainties in determining whether observations of
the large scale structure match any theory. Gross inconsistencies are required to convincingly
rule a theory out. One thing we may say about strings is that if the mass per unit length of the
string is too small then it could not possibly induce gravitational condensations with velocity
dispersions as large as those seen in clusters of galaxies (Turok and Brandenberger 1986,
Stebbins 1986). Typical estimates are

£2107%  where ji=—. (1.1)
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(Here fi is equivalent to Gu used in most other works in which they take ¢ = 1.) In the
standard string model, in which strings only interact gravitationally, they produce copious
amount of long wavelength gravitational waves which would disrupt the observed timing of
the millisecond pulsar if 4 is too large (Hogan and Rees 1984). In addition, estimates of the
microwave background radiation (MBR) anisotropy produced by strings place additional up-
per limits on p (Kaiser and Stebbins 1984; Brandenberger and Turok 1986; Traschen, Turok,
and Brandenberger 1986, Brandenberger, Albrecht, and Turok 1986). Typical estimates from
both the MBR anisotropy and the pulsar timing are

<1075, (1.2)

Since the anisotropies typically scale linearly with ji, we see that the predicted anisotropies
are within an order of magnitude of present detection sensitivities.

If one were able to detect and measure the statistical properties of the MBR anisotropies
this would provide another probe of primordial density inhomogeneities. In fact, in most the-
ories of the formation of structure, the predictions of the statistical properties of the MBR
anisotropy is much more straightforward than the predictions of the distribution of galaxies.
_The MBR anisotropy is, in this sense, a better probe of the primordial inhomogeneities than
the large-scale structure. Of course, we will have to wait for improvements in detector sen-
sitivities before primordial fluctuations can be studied in this way. In theories in which the
initial fluctuations are Gaussian the properties of the predicted anisotropies may be calcu-
lated in a straightforward way and have been well studied. This is not the case for strings.
The anisotropy produced by specific geometries have been studied (Kaiser and Stebbins 1984,
Vachaspati 1987, Chase 1986). Some estimates of the statistical properties of some component
of the anisotropies have also been studied. However, in these studies, the normalization was
estimated only crudely. Furthermore, the dominant component of the anisotropy is likely to
be that produced by the rapidly changing gravitational fields of strings (Brandenberger, Al-
brecht, and Turok 1986), and the statistical properties of this is not well understood. Because
of the non-Gaussian nature of the anisotropies, the necessary sum over realizations probably
cannot be performed analytically. The approach to calculating anisotropies suggested here is
to develop techniques for calculating anisotropies for arbitrary geometries and then to apply
this technique with statistical realizations of string configurations generated numerically, and
thus to obtain the expected distribution of anisotropies.

The purpose of this paper is to develop the machinery for calculating the anisotropy
produced around an arbitrary loop in Minkowski space illuminated by a constant brightness
background. This should produce a good approximation to the anisotropy produced by loops
much smaller than the horizon. This correspondence is true whether or not the loop we see
projected on our sky is from small or large redshift; it is only required that we see the loop -
in front of the surface of last scattering which is probably at a redshift zj, = 10 — 1000 (see
Kaiser and Stebbins 1984). In §II I give a more complete calculation of the anisotropy due
to an infinite straight string. The formalism for calculating the anisotropy around an object
in Minkowski space due to its internal and bulk motion 'is derived in §III. In §IV I apply
this formalism to a spherical cluster of galaxies in order to compare these results with and to
extend the work of Birkinshaw and Gull (1982). A review of how a loop of string in Minkowski
space moves is given in §V. Certain properties of the anisotropy around a loop which may
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be calculated analytically are considered in §VI. In §VII I discuss the anisotropy around a
very simple loop geometry which may be calculated analytically. The results of numerical
calculation of the anisotropy around more complicated loop configurations are presented in
§VIIL I leave the application of the methods developed here to putting constraints on the
parameters of string models to a later paper. I only note here that there are at present large
theoretical uncertainties in the number density of loops present in the matter era. Thus,
at present, no definitive constraints could be determined in any case. In §IX I compare the
results obtained here with those of Brandenberger, Albrecht, and Turok (1986). Finally §X

contains a summary.

The contents of this paper is only a small part of the program required to determine
the full nature of microwaveanisotropy produced by cosmic strings. The anisotropy produced
at the surface of last scattering bears further study, as do contributions to the Sachs-Wolfe
integral from later times. Calculations of the anisotropy due to superhorizon strings requires
a formalism appropriate to an expanding universe. Finally we should apply these results to
an ensemble of string configurations and model as realistically as possible past and proposed
microwave anisotropy experiments.

II. ANISOTROPY FROM AN INFINITE STRAIGHT STRING

Previous calculations of anisotropy of the MBR due to moving objects have been
performed by “the method of moving lenses”. If a finite object produces a gravitational field
which is sufficiently constant in its own rest frame then, in that rest frame, one may consider
that object as a lens that does not change the energy of photons passing by it, but only
their direction. From this change in direction one may calculate the change in energy in the
rest-frame of an observer. The result in the limit of small angle deflections is

%0 _p Tl xfu) (2.1)
o 14+v- kg
where Eo refers to the energy in the observer frame, k;, is the unit propagation vector of
the photon in the lens frame, v is the velocity of the lens in the observer frame or minus
the velocity of the observer in the lens frame, p is the angle of deflection (assumed < 1) in
the lens frame, and I, is the unit vector in the lens frame about which the photon direction
vector is rotated (in the right-hand rule sense). If, as is relevant for strings, i, . v = 0, then
equation (2.1) may be rewritten :

AEO _ n ) _ _ 2y~ 1
TFo - “ko - (v x 1) q=(1-|v|%) ’.. (2.2)

where ko is the unit vector in the direction of propagation of the photon in the observer
frame. If, in the observer frame, the lens is backlit by a uniform blackbody background, such
as the MBR, then the temperature pattern is given by

AT AF
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These equations have been applied to galaxy clusters by Birkinshaw and Gull (1983), who
unfortunately used a form of equation (2.3} incorrect by a factor of 2 when calculating the
temperature pattern (see §III). In this paper I use the fractional change in temperature and
the fractional change in energy interchangeably.

The application of equation (2.1) to an infinite string is somewhat tricky because
the geometry around a long straight string in vacuum does not asymptotically approach
Minkowskispace far from the string. The energy of a photon is not an absolute property of the
photon but rather a relation between the photon and the observer. In particular, the velocity
of the observer must be specified in addition to his location in spacetime. The energy boost
discussed in the previous section refers to the change in energy of a photon as observed by a
global “rest frame”, i.e a time-like 4-vector field on the spacetime, u®, satisfying u®u, = —1
(I shall throughout this paper use metrics with signatures [—,+,+,+]). The energy of the
photon is then given by —k®u, where k% is the momentum 4-vector of the photon.

Here I shall describe a procedure for specifying the rest frame, u in the spacetime of
a moving infinite straight string. The procedure used is not the only reasonable procedure,
and other reasonable procedures do lead to different results! The ambiguity is not resolvable
because the spacetime is not asymptotically Minkowski. I also warn the reader that in what
follows I shall always only keep terms to first order in £ and not include higher order terms.
Consider a coordinate system (¢, z, y, 2) such that an infinite string is located along the z-axis.
If the metric were Minkowski then the Lorentz frames boosted in directions orthogonal to
the z-axis would be given by

u®(x,t) = (1, B cos(8) cos(x), B sin(6) cos(x),sin(x)) v=(1-p8%"3.

However the spacetime around a string is not Minkowski, the linearized metric may be written
(Vilenkin 1981)

. ~ r .
Guv = Npw + Ry Nuv = diag(—1,1,1,1) huyy = —8xjiln (E) diag(0,1,1,0) (2.4)

where r? = z2 + y? and r¢ is arbitrary. This metric is invariant to Lorentz boosts along the
string, so we may without loss of generality only consider rest frames moving orthogonally to
the string. An obvious analog to the u® given above, but one which will satisfy u®uq, = ~1

in this case, is
Bcos® Bsind )
u® =4« (1 0}, 2.5
VO @z (2:5)
where I have assumed x = 0 so the velocity is perpendicular to the string. As noted by

Vilenkin (1981) the metric simplifies to the Minkowski form, Guv = Nuv, if one makes the
coordinate transformation

t=t Z=z+44(1-In(r/ro))z+ %) T=y+4ia((L—In(r/ro))y—¢z) z2=2 (2.6)

where ¢(z,y) is defined by £ = r cos ¢ and y = rsin ¢ and will be restricted to be in the range
(=m,m). However, whereas the coordinates z and y can take any value, the coordinates z and
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FIGURE 1: Static geometry around an infinite, straight string. Shown here is the z-7 plane (see text)
is a slice perpendicular to the string. Except at the vertex, which is the string, the geometry is flat.
In the text a particular global rest frame moving with respect to the string is defined in analogy with
a Lorentz frame in Minkowski space. In this frame the string can be considered to be moving. The
circles on the two identified points, representing an observer, and the stars, representing distant emitters
of light, are moving with this rest frame. Lines protruding from these symbols indicate their velocities
with respect to the coordinate frame. If all the emitters were to emit light with the same temperature
then the observer would see different temperatures in different directions due to the differing directions
of velocities of the emitters in different directions. The temperature pattern is given by eq. (2.8). The
exact pattern depends the choice of global rest frames, and there are other reasonable choices besides the
one given here. However, all reasonable choices will give the same value for the temperature jump in the
direction of the string. The opening angle of the missing wedge, and thus the string mass parameter, is
greatly exaggerated (by a factor ~ 10%).

§ must satisfy |§| > —4xjiz if £ < 0. The two hyperplanes § = +474iz for Z < 0 are identified.
Thus the Z — § plane has a conical geometry with a deficit angle 87 which is illustrated in
Figure 1. One consequence of the conical geometry is that if one were to parallel transport a
velocity vector around the string and back to the original point the resultant vector will have
its Z — § component rotated by an angle 87ji. The fact that this remains true even if the
path remains arbitrarily far from the string indicates that the spacetime is not asymptotically
Minkowski. ‘

In the new coordinates the 4-vector field (2.5) becomes
@ = v (1,Bcos (8 — 45$) , Bsin (6 — 4id) ,0) (2.7)

where ¢ is defined by Z = Fcos ¢ and § = Fcos @, 72 = 22 + 32, and @ € (—7 + 47, 7 + 47 Q).
Now imagine we put an observer at the two identified points (#,,—Zo, 47 Zo,0) moving
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with @* and suppose he measures the energy of photons emitted by a particle moving with
#* with coordinates (Z., Z., Je, Ze) With ¥, such that all the photons arrive at the same time.
Furthermore, assume that all these emitters emit photons with the same energy, Eg, in their
rest frame. In the limit of infinite distance to the emitters, the difference in the energy
observed from that emitted is given by

Ec—-Eg _ __,. - < sin(0 — &) sin @ )
Eg €44 f cos s (d’e 1+ fcos(8 — ¢) cos ¢, - B cos 8 cos . (28)
where
_ ) +1 e >—4Tji .o Ze - =
e—{—l e < 4min’ sm¢°—\/§;3+gz+zg lﬁeE( 2’2)’

and @, is the ¢ coordinate of the emitter. The ranges of @ for the two values of € overlap due
to lensing. The observer will see two images of the same emitter if ¢, € (—47ii, +47 ), and
the energy of the photons from the two images will be different as indicated above. There is
thus a discontinuity in the energy of photons across the image of the string. There is no such
discontinuity in the opposite direction near ¢, = . Istress that the angles used in equation
(2.8) are as measured in frame of the string and bear no simple relation to the angles in the
sky of the observer at a fixed time, except in special cases.

Photons which pass much closer to the string than the distance of the string to the
observer have ¢, < 1 and

Eg —Eo _ dnpe Bsin 8 cos 1),

Eg 1-—- fcosf costp,

(2.9)

Note that the form of equation (2.9) is exactly what we would expect from (2.1) if I, is along
the string and the photon deflects an angle 47/ toward the string as it passes by the string. As
noted above there is a discontinuous jump between the energy boost for photons going above
and below the string. This discontinuity was discovered by Kaiser and Stebbins (1983) in the
case § = ¢y = 0 and was predicted independently, although not calculated, in Gott (1983).
Since the velocity of the string is always perpendicular to the length of the string, equation
(2.2) applies to strings. It is clear from equation (2.2) that the maximal discontinuity occurs

when v, ko, and I, are all perpendicular and is

E,—E.

max I

’ = 8rufn. (2.10)

The choice of geometry analyzed by Kaiser and Stebbins (1983) (v, k., and I, all perpendic-
ular) was unfortunate because the discontinuity in the case studied is a factor of v less than
the maximal discontinuity. This might have lead one to believe that the maximal anisotropy
was proportional to § and not 8v. In §VI I will show that the discontinuity given by equa-
tion (2.2) is correct for strings that are not straight as well. This has already been shown by
Vachaspati (1987) in the case of certain types of waves on an infinite string. From now on this
paper will deal with loops and not infinite strings. For the case of loops-the spacetime will be
asymptotically Minkowski, and there will be no ambiguities in the definition of asymptotic
rest frames.



III. PHOTON BOOST IN MINKOWSKI SPACE

If there is no rest frame in which the gravitational fields are sufficiently constant then
the method of moving lenses cannot be used and a more general approach must be taken.
Here I will present the first order change in energy of a photon due to the gravitational field
of any object of finite extent which only slightly perturbs Minkowski space along the photon
trajectory. Before proceeding I will say a few words about choice of general relativistic gauge.
As is well known, gauge freedom (i.e. freedom to choose coordinates) in general relativity
may lead to difficulty in giving a physical interpretation to results of calculations in general
relativity. However, in what follows the subject of general relativistic gauge will not play
a crucial role. The calculations are done in the “radiation gauge” in which equation (3.6)
is satisfied. In this gauge the metric deviation must satisfy certain gauge conditions (see
Weinberg 1972), but these are not mentioned in this paper. The reason I choose this gauge is
that the Green function for the initial value problem is particularly simple in this gauge. The
reason I do not need the gauge conditions is that I only use gravitational fields as derived
from the Green function and these fields automatically satisfy the gauge conditions. As is
well known, the radiation gauge, while removing some gauge freedom does not remove all of
it. However, the choice of outgoing modes and asymptotic flatness does. Clearly there is no
ambiguity in equation (3.7) below. Finally, as I am only calculating the change in the energy
of a photon as measured by observers at asymptotic infinity, and, since there is no ambiguity
in setting up an asymptotic rest frame, there is no problem in interpreting the energy shifts
derived. The physical system of a string is rather unusual in general relativity. The weak field
approximation is a very good one for strings, but the slow motion approximation is not. Most
objects that are of interest to relativists are held together by gravity. Therefore, if they are
to remain as one object while moving relativistically, the gravitational fields must be strong.
Strings, of course, are not held together by gravity and thus may have weak gravitational
fields as well as relativistic internal motions.

I now proceed with the calculation of the boost of a photon passing near a string.
There are differing sign conventions in general relativity, I shall use the notation of Weinberg
(1972) in which, for example, the Minkowski metric is n,, = diag(—1,1,1,1). The equation
of motion of a photon in an arbitrary spacetime geometry is the geodesic equation,

o

%p" +T5,p°p" =0 = %—, (3.1)
with the restriction p®*p, = 0 (remember that ﬁ P%pa = 0 follows from the geodesic equa-
tion). In equation (3.1) p* is taken to be the photon’s 4-momentum, and the arbitrary
multiplicative constant usually associated with the affine parameter, A, is specified by this
requirement. I take the geometry to be only slightly perturbed from Minkowski space, i.e.
Guv = Ny + hyy with by, < 1. To zeroth order in perturbations from Minkowski space
(hag = 0, T'g,, = 0) one may easily solve equation (3.1) obtaining

x = Xo + kt A= k|=1 p=Ek* and p°=E. (3.2)

Here k = k' is the direction of motion of the photon and E is the energy of the photon as
measured in the coordinate frame. The component of xo parallel to k determines the time at
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which the photon arrives at very distant observers in the k direction. The components of xp
perpendicular to k tell us the photon’s position on the sky of the observer. We are interested
in the first order change in the energy of the photon (as measured in the coordinate frame)
due to hqg, keeping the initial energy fixed. This will be given by p®(A) for which the first
order geodesic equation is

d 1 1. . A
7Y 0 = E(Zhoﬂ,q — hpq,0)pPp" = -2-hooP°P° + hoo,ip°p* + hoi jp'p’ — Ehs‘jP'P’ ,

since 1
T3, = - E(hoﬁn + hoy,8 — hgy0) + O(h3p).

To first order in hog We may substitute the unperturbed values of z#()), p*(), and A. Thus
we see that the first order geodesic equation for p? (as for all other components) is not coupled
to the other first order equations and may be trivially integrated. The result is

0 —_ t . R - . . - .
POE o [* [Lhootr) +5- Vhonte) +- Vit 0 - Shytmins]

Assuming the_th{e;__,g;\.g itational field goes to zero at spatial infinity, one may integrate by
parts to obtain an éXpression for AE = p°(+o0) ~ p?(—oo0) which just depends on the time
derivative of the gravitational fields:

+m [ -~ L4 ~ » b ~ . 3
pm— - —/ [lhoo(xo + kt,t) + hoi(Xo +kt,t)k' + lh.‘j(Xc; + kt,t)k'k’] dt. (3.4)
E —oo L2 2

Since hqpg vanishes at spatial infinity, the value of AE is the difference between the energy
measured in the coordinate frame (which is not perturbed) long after and long before the
photon passes through the region in which Minkowski space is perturbed.

It will be convenient to consider the source of the gravitational field to consist of
individual particles, labeled by p, each following separate trajectories, rP(t). The Ricci tensor
may be then be written Rapg(x,t) = 3, RE 4 (t)6¢®) (x~rP(t)). To keep the equations compact
I use the function

FP(t) =rP(t) — xo (3.5)

rather than rP(t). Since the individual particles will not be constrained to conserve either
energy or momentum they may individually contribute monopole or dipole radiation in lin-
earized gravity, although the sum of the gravitational fields from all particles should not.
Thus many of our intermediate results will be unphysical. In fact, since monopole radiation
will produce a divergence of the final photon energy, many of our intermediate results will
be divergent! Einstein’s equations linearized in Minkowski space may be written as the wave
equation after a suitable choice of gauge (Weinberg 1972),

02

2 — —
(v ot2

Yhag = —2Rap. (3.6)
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The Green function solution is

2 Rop(x',t")6(t —t' — [x —x'
haop(x,t) = 4—”// 8 )Ix(—x’l | ) d3x’' dt'. (3.7)

The gravitational field from a single particle is thus

+oo §(t —t' — |x —rP()|)RP o (t'
ap 21 J_ Ix - rP(t’)]
_ 1 RE4(t'P)
T IR - 7 (k-1 (7))

dt’
(3.8)

where i'P = $'P(x, ) is implicitly defined by t — {/P = |x — xP(#?)|, and I have used

% [t—t' —|x—rP(t")]] = b= rp(t?,l = ::(.tf;j —r) (aaL;p) : (3.9)

The time derivative of the gravitational field is then
RE5(EP)x — xP(EP)|
[ — (@7 — £ (%) - (x - P (FP) P

—rP(i'7)| {i'-P(f’P) - (x - rP(i'7)) — |1'-P(t~’P)|2} +#P('P) - (x — rP({'P)) .
[l = 2P| — 2 (77) - (x— P (@)

2n iz‘;p(x, t) =—

oor X
— RE4('P)

_ , (3.10)
One must now integrate this time derivative along the photon trajectory,

/+°° ) 1 [tee { RE ,(7'P) |kt — £P(7'P)|

hP o (xo0 + kt,t)dt = — — E k
. s(xo ) 27 J_co |||kt — #p('P)| — ip(F'P) - (kt — £2 (F9))]2

+ RP (F7) [ke — P (') [{iP(7) - (ke — FP(FP)) — [P (%) |2} + P (FP) - (t — ¥P(PP)) }dt
o ([ke — £p(2p)| — ip(Ep) - (kt —£o ()2
(3.11)
Here {7 = #'P(t) is implicitly defined by ¢t — #’? = |kt — fP(?)|. It is more convenient

to integrate with respect to the particle’s coordinate time, P, rather than the light ray’s
coordinate time, t. As long as the trajectory of the particle remains timelike, ([#?| < 1),
#'P(t) maps the interval ¢ € (—oo, +00) monotonically onto t € (—oo, t'2,,.), where t'2__ is

implicitly and uniquely defined by

' =k EP(tP ). (3.12)
The inverse function of £'P(t) is :
12 _ (sp(+1)]2
Py = 1| IPER (3.13)
2 t'—k-rr(t)
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The integral now reads

+o0
/_x hﬁp(kt,t)dt =
1 t':... { Rgﬁ(t’) lﬁt_p —-rP (t')l
27 oo \[[ktP —£p(t)| —iP(t’) - (kiP — £p(¢"))][[kiP — £P(t!)| — k- (kiP — 7p(¢"))]
+RP(¢) [IkiP — £p (&) |{F2(¢') - (kEP — £P(t")) — [EP(t")|2} +#P(¥") - (kP — PP (t'))] } &t
% likte —go ()| — ip(¥) - (ke — £ (21)))2([kip — 0 (¢")| — k- (kEP — ro(2"))]
(3.14)
Using Einstein’s equations, Rag = 87(Tag — 19asT*,) and equation (3.4), after some algebra
we obtain g
AE __ mex [ GP B o (8P ,
- = _42,,:/—‘» (23 B (-5)) dt (3.15)
where

B(t)=@"-k-t)2+R, R(')=[?- (9 -k)?,

D(t') = (fP -k~ t)?(1+#° - k) + (P - k- t')R + (1 - -K)R,
1 : .

57(¢) = [ 378) + TE(EW + ST W)

Here TZ 8 is the contribution to the stress-energy tensor from a single particle, i.e. T, g(x,t) =
>p Tgp(t)G(s)(x — rP(t)). One might be tempted to integrate equatioon (3.15) by parts,
however one cannot because the integrand is divergent at the upper time limit when ¢t/ =
k- £P(t'). In fact, the integral is divergent at the upper time limit, as shall now be discussed.

Singular Behavior of Formalism

Before proceeding, it is important to check the integral (3.15) for any singular behavior.

The terms in the numerator clearly remain finite for ¢ € (—oo, t'5 .. ). A singularity may also

occur if one of the factors in the denominators becomes zero. First consider the term D. One

may always choose the spacetime coordinate system such that the particle in consideration

at the time in consideration is at the origin and at ¢/ = 0. For r?(0) =0 and ¢’ = 0, D takes
the simple form

D= (l—fp-i)IXle-f-sz-fll"p-XQ XQ-iSO (3.16)

where the inequality comes from the requirement that ¢’ .. > 0. One can show that D
is positive definite for xo # 0 and [fP| < 1. In the case of strings there will be particles
which momentarily approach the speed of light and may cause D to approach zero. The
physical reason for the singularity is as follows. If a particle approaches the speed of light,
it will become nearly resonant with gravity wave modes moving in approximately the same
direction as the particle’s motion. This particle will excite these modes, creating a pulse
of strong gravity waves moving outward at the speed of light in the direction in which the
particle was moving when it approached the speed of light. The condition D = 0 for xo # 0
is just the condition that the photon trajectory intersects the trajectory of such a pulse.
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However, as we shall see, these pulses have no effect on the anisotropy. The other case when
D =0 is when xo = 0. If xo = 0, then the t/ = ¢'¥ _ and the light trajectory has intersected
the particle in question. This is an extremely degenerate case to which the formalism should
not be applied. It will be shown in §V that photons passing on either side of a string are
perfectly well behaved no matter how close they approach the string. The divergence at
xo = 0 has no physical significance.

The other term in the denominator, #P - k — t’, will become zero at the upper time
limit, ¢/ = ¢'5 ., and this will, in general, cause the integral, equation (3.15), to be divergent
at the upper time limit. If we denote the integrand of equation (3.15) by —ID(t'), then the
divergence is apparent:

5880 7 57 (75 ) s, 1

If the derivative term is nonzero, which will generally be true, the integral will be logarith-
mically divergent. This is an artifact of dividing the full spacetime stress-energy tensor into
unphysical pieces. The sum of the contributions from all particles will not be divergent as
long as energy-momentum is locally conserved. Using the asymptotic form (3.18) in the in-
tegral (3.15) and transforming the variable of integration back to photon time as in equation
(3.13), we obtain for the asymptotic contribution from all particles

7 (t4) di’P(t)
: 04 r_ : 0 (;7p
lim Y /'»(: B d = tim @) 0 ¢
ty—+oo P ty~+oo

(3.18)

1L
> 1—k-ir(tn,,) 10V \1 ki) ycwy  Joo t~

However, the divergence is, in fact, not real because the coefficient is zero. It is shown in the

appendix that _
p
z = .1 I:i, (—S.—):I = 0. (3.19)
. 1—k#p(t'h,,) 10 \1 -k i/ fo_pp,

However, this singular behavior will lead to problems in numerical integrations of equation
(3.15) if one does not take special steps to avoid it. We may use this equation to transform
equation (3.15) to a more useful form.

One should also examine the behavior of the integral for large negative times. To do
this one must specify how a particle’s trajectory behaves for large negative times. We shall
require that the particles acceleration, ¥?, and the particles velocity, ¥P, remain bounded. For
our applications these conditions will be satisfied. It is not, however, reasonable to require
that the particles position remains bounded. In general, one expects that the center of mass
of the object to which the particle is attached will undergo ballistic motion. Thus one may
write the particles trajectory as

P(t') =5 (') + ¢/, (3.20)
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where ¥°(t') is bounded. Evaluating the leading terms for large t, one finds that

o=+ O ( SP |
2 B = T e o (1 +1‘1~i-P) (3:21)
where e .
I,1=(1—|v| J)k—2(1-v-k)v Bl =1.

1+ [¥)2-2v-k

As long as the term in parentheses remains bounded, its time derivative will have zero time
average and the integral will converge. The denominator will remain positive (i.e. nonzero)
as long as |[¥| < 1 and |k - #?| < 1. The first condition will be satisfied for all reasonable
objects. The second condition is the condition that the particle not move at the speed of
light directly at the observer. For the case of strings this is not an impossibility. However,
it will happen only for a set of measure zero of string configurations, and this possibility will
thus be ignored.

Simplification

Keeping the foregoing discussion in mind we may still proceed to try to simplify equa-
tion (3.15). In order to manipulate the equations sensibly, we must regulate the divergence
in some way. The method we shall use is to evaluate the integral at an upper time limit, less
than t'2 .. In particular, we will take this upper time limit to be t'5 ., — €p. After invoking
equation (3.19), we will be able take the limit ¢, — 0 and obtain a finite result. Integrating
equation (3.15) by parts we obtain

AE /‘":ux €p (i-'P k- t')B + (1 — FP i)B sr _,
>~ 4 — +2)—dt
i Z{ ( (Fp -k —t1)2 D

P
3.22
(Fp-k—t)D patit e,
One may derive the following identities:
(k- t) (B-20"-k-t) + 1 -#*-K)B =D,
":nx € P P
/ R LA S i
—o0 (£r -k —t)? (kP -k —¢')(1 — %P -k) .
t,:u: €p 4
- / __‘]‘___..._a_ (_S_) dt’,
—o0 k-0t \1-¢r.k
and
p . P
lim [—E— (E - ——1—)] ~|B_ 5% . (3.23)
E,-—DO P . k - t' D 1 —rP 'k "=t'::lx‘¢l’ ) R (1 - i‘P * k)2 =P
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Combining with equation (3.21) one obtains

AE_E =4) {/‘ e It dt' + Cp} (3.24)

-—00

where

1 ) SP R SP
N ) ) ¢ -(B_5 . 3.25
P fp,k_t’at' (l—fp'k) g [R (l_ip.k)z]t'=¢" ( )

The term, I, carries the divergence and is clearly of the form (3.17). We are thus assured
that the divergences cancel. Note that the term D has disappeared from the denominator.
Thus the equation for the photon boost does not diverge when D = 0. Therefore we should
not expect particularly strong boosts when a photon passes through the pulses described
above.

A surprising result is that not only is the sum of the integrals of I, finite, but it is
zero. We now proceed with proof. Consider the variable xo which, along with k, identifies
the photon in consideration. We may break xo into a piece parallel to k and perpendicular
to k:

X0 =x, —kr x, -k=0. ' (3.26)
From equation (3.12) we see that t'f,, only depends on 7 and not on x; . For the purposes
of the proof we shall consider photon trajectories with different value of r than that of the
photon for which we are calculating the boost. To avoid confusion we shall denote these
values by 7. For each value of # and for each particle p there will be value ¢/, call it f:,, defined

analogous to t'2 | i.e.
tp(7) : r”(t )+#-1f,=0. (3.27)

For the particle trajectories we will consider, the function £’ »(7) is a smooth, one-to-one
mapping of the interval (—oo,+00) in # to the interval (—oo +00) in t'. It is possible,
therefore, to change the variable of integration in equation (3.24) from t’ to #. It will be
convenient to choose, for each particle p, ¢, = f;,(r — €). Performing the change of variables,
we obtain

f’(r—é) P
E/ ! _a_( s .)dt'
Pk —ttOt \1—3p.k
r—é’ \ p
=/ 12[ 1 i,( S )] dt.
—oo TP 1P kO \1—4p.k/ g4

Clearly equation (3.19) is valid with '} ,, replaced with /,(#) because {! () is just t'R,,, for a
different photon. Thus the sum 1ns1de the integral of equa.tmn (3.27) is zero and the mtegral
is thus zero for all values of &. We thus conclude -

(3.28)

i (r-9)

Z/ p(t)) dt’ = hm Z/ L(t)dt' = 0 (3.29)
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This greatly simplifies the equation for the photon boost. Equation (3.24) becomes

AE R SP
— =4 - 3.30
E ; [R (1 -fp ‘k)z]t,_t,, ( )

IR

which is our final result.

The result that the total photon boost only depends on what the loop is doing at t'P
may seem somewhat mysterious. Clearly the photon has been in causal contact with the per-
turber for all times previous to that, and it is not obvious why the effects of the gravitational
fields produced by the perturber at all times previous to t'f ., should exactly cancel. One
heuristic argument for the cancellation goes as follows. The direction of propagation from the
perturber to a point on the photon trajectory is not parallel to the direction of the photon,
k, for all perturber times t' < < t'8ax- If one considers the gravitational field propagating in
a given direction as a sum of sinusoidal waves traveling at the speed of light, it is clear that
the time-averaged contribution to the integral (3.4) is zero unless the wave is traveling in
exactly the same direction as the photon. In the latter case the integral is formally infinite.
If we take the limits of integration of equation (3.4) to be finite then each sine wave will
contribute a boundary term to the integral. As the sine-waves must conspire to add up to
zero net gravitational field far from the loop, it is not surprising that the boundary terms
from all waves not parallel to k should add to zero. It is also not surprising that the formally
infinite integral from the waves emitted at ¢’2 .= and propagating parallel to k should con-
spire to sum to a finite result when one includes the phase coherence required to cause the
gravitational fields to fall off at infinity. This heuristic argument as well as the derivation of
equation (3.29) suggests that the exact cancellations are a consequence of taking the observer
to be infinitely far from the perturbing object. If we were to take the observer to be a finite
distance from the perturber, then we would expect a contribution to the photon boost due to
the motions of the perturber before t'? _ . The contribution should be small for the observer
much further from the perturber than its size and should be of increasing importance as the
observer approaches the perturber.

Limitations of Formalism

Let us review what the meaning of equation (3.30). We have calculated the change in
energy of a photon from passing through the gravitational field of an isolated, localized source
imbedded in Minkowski space. Since the only source of gravitational fields is a finite isolated
source the spacetime is asymptotically flat and we may choose an asymptotic rest frames
without any ambiguity. The energy shift is measured with respect to a particular asymptotic
rest frame. The shift being the difference in energy between when it is measured at t — —oo
before it passes the source, and the energy when it is measured at ¢ — +oo after it passes
by the source. The fields were calculated using linearized general relativity in the radiation
gauge, and the energy shift was calculated in the linearized sense of equation (3.2). This
energy shift is expressed in terms of the stress-energy tensor of the source. The stress-energy
tensor was decomposed into the sum of the stress-energy tensor of individual particles which
must not move superluminally. In addition, they must never move at the speed of light in the
direction of the motion of the photon. To obtain the total energy shift one must sum over
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all the particles of the source. We have eliminated contributions to the photon boost which
are zero when local conservation of energy-momentum is exactly obeyed but which diverge
when this condition is not satisfied. This will allow easier numerical implementation of the
formalism where one would inevitably represent a continuum of particles by a finite number,
which could not obey local energy-momentum conservation.

We would like to apply this formula to the comparison of the energy shifts of photons
arriving at an observer at the same time from different directions. The gravitational field
will cause different photons to experience different time delays. Corrections to AE which
include these time delays are second order in |h2 | but this does not necessarily mean that
they are small. If an object of size R produces a gravitational field of size h, then photons
passing through the object will experience time delays of ~ hAR/c and the minimum time
in which the object as a whole can change is ~ R/c. If h < 1, as has been assumed, then
it is probably valid to ignore time delays. It is not, however, valid to ignore time delays
when the object possesses rapidly changing substructure which significantly effects some of
the photons or if the light source is rapidly varying. For the purposes of this paper time
delays are unimportant. The temperature of microwave background is not rapidly varying,
and for most string configurations we expect no rapidly varying substructure.

Another limitation of calculating only the linearized energy shift is that we have ignored
the change in direction of the photon trajectory as it passes the object. The change in angle
of photons will typically be ~ k and will vary by this amount over the projected surface of the
object. Thus we have typically miscalculated the photon position by an amount ~ hR <« R.
Unless the object has very small substructure, we have only miscalculated the gravitational
field that the photon experiences by a small amount. Also, if the source of photons had
structure on angular scales ~ h times the angular size of the source, and if this structure
could be confused with the photon boosts calculated here, then we would not be able to
predict the observed pattern on the sky using this formalism. For the case at hand, these
deflections are of little importance. Strings do have very small substructure in the sense that
the width of strings are microscopic while their lengths are astronomical. Furthermore, there
is a significant discontinuity in boost across the projection of a length of string on the sky.
The effect of the fact that we have ignored such deflections is that the calculated image of
the temperature pattern on the sky will have the angular position of these discontinuities
misplaced by of order h (~ 10°) times the angular size of the loop. This error is of no
observational significance. Furthermore, we do not expect the microwave background to have
significant substructure on very small scales due to the smoothing effect of the surface of last
scattering. Thus errors due to deflections are insignificant. In summary, it is quite reasonable
to ignore second order corrections to AE when calculating anisotropy due to strings.

Application to Sky Maps

Given that most loops that we would observe existed at redshifts much greater than
unity, what significance does the above calculation of boosts in Minkowski space have to
predictions of anisotropies we could observe? We must first restrict ourselves to loops that
were much smaller than the horizon when the microwave photons we see passed by the
loop. Furthermore, the impact parameter of the photons with respect to the loop must be
smaller than the horizon size at that time. If these two conditions are satisfied, then the
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gravitational fields used are approximately correct, and thus the above calculation of the
boost of the photon as they passed by the loop will be approximately valid. Ignoring other
inhomogeneities, the effect of the cosmology after the photon passes near the loop will just be
to redshift all photons equally. SInce this will not change the relative fractional differences in
the energy of the photons, it will not change the pattern of anisotropy. We may just linearly
superpose anisotropies due to other inhomogeneities to the anisotropy calculated for the loop
in question. To reiterate, the anisotropy calculated here is valid for subhorizon loops and only
for photons passing much closer than a horizon distance to the loop. A generalization of the
method derived here to a cosmological setting is being developed at present by Veeraraghavan,
Stebbins, and Silk (1987) for the purpose of calculating the anisotropy due to superhorizon
strings.

The photons satisfying the conditions stated in the previous paragraph will all have
been moving approximately pa.rallel when. they passed the loop. Thus all the photons we see
will have approximately the same k. The parameter xo determines both the position in our
sky of the light trajectory and the time at which this light trajectory arrives at our detector.
If we decompose Xo as in equation (3.26) then the term x; determines where in the sky the
photon will come from and 7 determines at which time we receive it. In particular, the larger
T is the later we receive the photon.

IV. ANISOTROPY FROM MOVING CLUSTERS

As a check of the results of the previous section we may apply it to a simple example,
the case of a single particle moving in a straight line at constant velocity. The temperature
fluctuation pattern in the MBR from a moving point mass has already been calculated by
Birkinshaw and Gull (1983) using the moving lens technique. We take the trajectory to be
rP(t) = ro + ft. One may always redefine ¢ so that (ro — Xo) - k = 0. In this case xo — ro
will be the apparent position of the particle as seen by a sufficiently distant observer situated
along the photon trajectory at the time when the photon reaches the observer. The stress-
energy tensor of the particle will be Ty = ym, T§; = —ymp;, and T = ympf;B;; where

= (1 — #2?)~% and m is the mass of the particle. Usmg the above notatlon (3.30) becomes

AT _AE _ /3 (x0 — To)

which is the result of Birkinshaw and Gull (1983). Birkinshaw and Gull derived this result to
estimate the anisotropy produced by the transverse motion of clusters of galaxies. We pause
here to extend this analysis to somewhat more realistic models of the mass distribution of
clusters than the constant density sphere used in Birkinshaw and Gull (1983). First note that
for a collection of moving particles the anisotropy pattern on the sky is just the sum of the
patterns of the individual particles. For systems with nonrelativistic velocity dispersion the
motion of the individual particles are well represented by their ballistic motion at the time
the observed photons pass through them, in which case the pattern for an individual particle
is just given by equation (4.1). So for a collection of particles

(4.2)



For a continuous, spherically symmetric density distribution moving uniformly with a trans-
verse velocity v equation (4.2) becomes

AT _  4GMproj(rpro)vs
T carproj

cos(9), ' (4.3)

where Mproj(Tproj) is the projected mass within the projected radius, rproj, and ¢ is the
angle between v, and rpr.j. If one models a cluster as having a spherical density profile

o(r) = po(l + (r/rcore)?) 5, and define v, = 1/Gpor3,,, then (4.3) becomes

3¢
AT _ -7 03 vy r (f - %) Tcore rgroj
- = 1.3 x 10 (10 ke /sec)® T(E — )T(&) rorej 1+ 1| cos(g). (4.4)

We see that for reasonable cluster parameters this effect is far from being detectable at present
and is, in any case, liable to be swamped by the Sunyaev-Zel’dovich effect even for clusters
with small gas content. This is true whether or not one accepts the very large cluster peculiar
velocities reported by Burstein et al. (1986) or by Collins, Joseph, and Robertson (1986).

I conclude this section with a word of caution concerning applying the above equations
to a system acting under Newtonian gravity. It was just shown that this formalism may
give infinite results if the condition of local energy-momentum conservation is not satisfied.
However, in Newtonian gravity the particles interact through “action at a distance”, and
energy-momentum is not locally conserved. Therefore including the gravitational acceleration
of the particles in their trajectories will in general lead to divergent results. In fact, it is not
even consistent to include the gravitational acceleration to the particles in calculating the
boost to a photon because such terms are second order in G, and we have ignored other
terms of the same order in deriving the above equations. In short, one must not include the
contribution of gravitational fields to the time derivatives of the stress-energy tensor when
using the formalism developed in this paper.

V. COSMIC STRINGS IN MINKOWSKI SPACE

The dynamics of strings was developed in Goddard et al. (1973) and applied to cosmic
strings in Kibble and Turok (1982) and many later works. If one ignores the internal dynamics
of the matter fields which make a cosmic string, the interaction of the string with the matter
around it, and the backreaction of gravity on the string; then the equations of motion of a
cosmic string in Minkowski space can be solved exactly. All of these approximations will be
very good for cosmic strings long after the epoch in which they are formed. The dynamical
theory of cosmic strings is identical to the classical theory of “massless strings” which was
developed over a decade ago to try to explain the mass spectrum of mesons. While the
“massless strings” of particle physics may have free ends, this cannot happen for cosmic
strings produced in phase transitions. We will restrict our attention to string loops in this
paper saving the discussion of infinite strings in an expanding universe for a later paper. We
may describe the motion of a string in a specific Minkowski rest frame by a function r(o,t)
which gives the position of a specific point on the string, labeled by o, at time ¢t. We have
much freedom in how we assign ¢ to points on the string at different times. An especially nice
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choice is one where particles of constant o move perpendicular to the length of the string.
ie.

F-r'=0. (5.1)
Here ' denotes differentiation with respect to 0 and ° denotes differentiation with respect
to time. It was shown by Goddard et al. (1973) that equation (5.1) is consistent with the

further requirement
2+ ') =1,  (5.2)

and that with this choice of ¢ the equations of motion take the simple form:
 §-r'=o0. (5.3)

If the velocity of the closed loop perpendicular to its length is everywhere initially less than
the speed of light, i.e. |f| < 1, then it will remain so except on a discrete set of points on
the o-t plane where the velocity will equal the speed of light. While tachyonic solutions to
string dynamics exist they will not be important for cosmic strings. The above prescription
determines o up to a constant and we will further specify that around the loop it varies from

0 to L where
L= fdo= fu- ) Ha, (5.4)

which is constant in time. Equation (5.3) may be solved easily. With the requirement for a
loop that r(o,t) be periodic'in o, the most general solution is

r(o,t) = %(a.,.(t +0)+a_(t—o)) +¥t (5.5)

where a; and a_ are periodic functions with period L. The ¥ term represents the center of
mass motion of the string and apart from this secular term the string evolution is periodic.
From equation (5.5) it is clear that the motion of the particles of constant o have orbits which
are periodic with period L. However, in the string center-of-mass frame, equation (5.5) tells
us that r(o,t) = r(o+L/2,t+ L/2) so the actual period of the string configuration is L/2 and
may be smaller in certain special cases. Equations (5.1) and (5.2) place additional constraints
on a; and a_. In the center-of-mass frame we define

Av(u) = ay(u)

4 (¥=0). (5.6)
A_(w)= E;a..(w) _
Equations (5.1) and (5.2) then require
|A+(u)] = |A-(w)| =1, - (67)

so A, and A_ are parameterized closed curves on the unit 2-sphere with period L. The only
other constraint on these curves comes from the requirement that a, and a_ are periodic.
This tells us that

fA.,.(u) du = fA_(w) dw = 0. (5.8)
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When two pieces of string collide, they will either pass through each other or else the four
segments meeting at the point of collision will become connected differently than initially.
This latter process is called intercommutation. During intercommutation the string will not
obey the equation of motion (5.3) but it will both before and after. If, for example, a loop
intercommutes with itself, then it will become two loops, and the functions (5.7) describing
the two loops will be different from, but related to, the functions describing the initial loop.

The curve in real space traced out by a string will be smooth so long as |r'| > 0 or
equivalently [f| < 1. This condition will be violated at points where A, (t + o) = A_(t — o)
which will occur once each period for each time the curves traced out by A, and A_ on
the 2-sphere intersect. These points will correspond to times and places where the curve
traced out by the string has a cusp. The velocity of the string at the tip of the cusp will
equal the speed of light. Since two curves on a 2-sphere will generically intersect an even
number of times, there will generically be an even number of cusps in the string trajectory
per period. These cusps are structurally stable in the sense that no small perturbation of the
string configuration will cause them to disappear. Some consequences of these cusps have
been discussed by Turok (1982).

In the case of cusps a string which is initially smooth will momentarily develop a
pointed cusp which then disappears. However, strings may also have nonsmooth features
that do not disappear. Such features will appear when two strings intercommute. During
intercommutation r’ will become discontinuous, and the string will therefore have a sharp
bend in it. This sharp bend will immediately break into two sharp bends which will propagate
in either direction along the string at the speed of light. These two bends propagating at
the speed of light are called “kinks”. In terms of the description of string trajectories given
here the two kinks correspond to the discontinuities in the two functions A, and A_ which
are created as one piece of a string is connected to another during the intercommutation
process. It is expected that these discontinuities smooth themselves out due to gravitational
backreaction and dynamical friction from the surrounding medium but how rapidly this will
occur is not known. These discontinuities will, in a probabilistic sense, tend to lead to cusps
which are very small in size (Thompson 1987, Albrecht, Copeland, and Turok 1987). Since
string intercommutation is a common occurence, kinks and their associated cusps will be
numerous on long strings and loops.

The string trajectory near a kink may be expressed as follows. We may choose the
coordinates x, ¢, and o such that at ¢t = 0 the kink passes through the point x = 0 in space
and through the string segment ¢ = 0. Expanding the string trajectory to first nonvanishing
order in o and ¢t we obtain '

{r'la+1"1t+... o> vpt+ ...
r(o,t) =

5.9
ryo+Egt+.. O<vgt+... (5.9)

In order that the two segments remain connected requires that

(ry —13)ve = —(F1 — ¥5) (5.10)

The gauge conditions (5.1) and (5.2) lead to obvious conditions on ¥;, ¥3, ¥}, and r}. The
equation of motion (5.3) leads to the condition

(ry —13) = —(F1 —F3)v,. (5.11)
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Combining (5.9) and (5.10) we obtain v, = +1 corresponding to either a left-moving or
right-moving kink, which gives

31 :|:r'1 =¥, :I:r’, = ¥kink for v, ==x1 and Wkinkl =1. (5.12)

One may easily check that vi;yx is the velocity of the kink, which thus moves at the speed of
light.

We shall need particular string configurations in order to explore the anisotropy from
loops. A particularly nice class of loops was discovered in Turok (1984) and is given by

Ai(v) =cosux+cosdsinu§ + sin¢g cos uf

A_(w) = (acosw + (1—a) cos3w) & + (asinw + (1—a) sin3w) § + 2 (a(1—a)) ? sinwi

(5.13)
where o € [0,1] and ¢ € [—,+7]. Of course, one may perform a rotation, a translation,
a reflection, or any combination of these to also obtain valid string configuration. One may
also Lorentz boost the above to obtain valid sting configurations. However, in the case of a
Lorentz boost, one would have to reparameterize the string (i.e. choose a new o coordinate)
if one wished to remain in the gauge given by equations (5.1-2). Some of these configurations
do have cusps but none have kinks.

The dynamics of strings does not depend on the mass parameter of the string: j.
However the gravitational field produced by these moving strings will be proportional to
iz. The formalism developed in the last section requires the stress-energy tensor of strings.
This has been derived by Turok (1984) in terms of the function r(o,t) discussed above. He
obtained

- 1 —¥
Tplxt) =i § ( b _r,-;r;.) $)(x ~x(0,1)) do (5.14
In the previous section we dealt with the gravitational field of individual particles. For strings
we will consider the particles to be the points on the strings labeled by constant ¢. Thus
in place of an index p we have a functional dependence on ¢. Sums over p are replaced by
integrals over 0. With this change in notation and (5.14) we find

sP(0,) = 5a ((1-#-K)? - (- B)?). (5.15)

We may write the equation for the photon boost, (3.30), explicitly

AE _ o u- (x; —rproi)
-—E'— = —4[1,'{ ( 'x-L _rpr0j|2 ) da, (5.16)
where
Proj = — . ik
rPi(g) = [r (r k)k] bettan(e)
and

u(o) = [(1 ) (l(%ri);)—z) (i. - i)i)] t'=t'2
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This expression for the anisotropy pattern at a fixed time is manifestly two-dimensional since
the vectors u, rP ), and x, all lie in the plane perpendicular to k. The curve traced by the
string on the sky at this fixed time is given by rP™i(¢). The expression for the vector u(c)
may be simplified by use of the identity

. d . t k)2
jrProl ll = d_o_rpros (0) = |r'|\/ 1- a%’ (5.17)
which yields
u= 'rprojIIZ l:r__lg_l_'.z_m‘.] . (5.18)
t'=tf,

We caution the reader that rP™’ is not the projection of r’(0,t'2, (c)) onto the plane per-

pendicular to k. For example, a moving straight (r’ constant) string will appear curved (xProi’
varying) to an observer due to time-retardation effects.

We stress that these results are specific to the string gauge defined by equations (5.1-2).
For a given loop one must perform a one-dimensional integral for each photon one considers.
If one wanted a sky map around a loop as seen at a given time, one would perform a two-
parameter set of these one-dimensional integrals. Except in very special cases, such as the
one discussed in §VII, the integrals cannot be solved in terms of simple functions. Thus,
although the problem was simplified considerably in §III, one is still quite far from obtaining
results regarding the anisotropy around loops. However, we may use equation (5.16) to be a
little more specific about implementing equation (3.30) in the case of strings.

V1. MBR ANISOTROPY FROM LOOPS: NEAR AND FAR

In this section we use equation (5.16) to derive analytic expressions for various aspects
of the temperature pattern produced by a cosmic string. We examine the the temperature
pattern very near a smooth piece of string, very near a kink, and very near a cusp. We

also derive expressions for the temperature pattern very far from a string loop. Ambiguities
- regarding the total luminosity of a loop are discussed. Finally it is shown that away from
the loop the temperature pattern satisfies Laplace’s equation in two dimensions. Various
consequences of this result are mentioned.

Anisotropy Pattern Near a Smooth Segment of String

The analysis in §II of an infinite straight string suggests that there will be a discon-
tinuous jump in the boost given to a photon passing on either side of a piece of string. The
discontinuity for an infinite string is given by equation n(2.2), with iy, || ¥’. The sign is such
that the photon will get less energy if it passes “in front” of a moving piece of string and
more if it passes “in back”. Given that [r'| = v~!, we see that the result of §II is

ATy — ATy _|F- (¢ Xi)l
T = 87 i FIra— (6.1)

The subscripts b and f stand for photons passing in back of and in front of the moving
string respectively. In fact, Vachaspati (1986) has derived equation (6.1) for a broad class
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of nonlinear waves on infinite strings for which the full spacetime metric may be written in
terms of simple functions. Indeed, it would be surprising if it were not true for all string
configurations. We shall derive it below using equation (5.16).

Suppose a piece of string passes the through the point in spacetime x = 0 and ¢t = 0.
We may choose the parameterization o so that o = 0 at this point. Furthermore let the
derivatives of the string trajectory at this point be fq, rf, ¥, and fo. We expand all quantities
in o and 6 = |x_ |, the distance of the photon trajectory from the string particle, o = 0, at
t = 0. The function ¢'f ,, (¢) may be expanded as

(o) = Tokk” o (6.2)

Expanding rP™i(0) about o = 0 we obtain

rgrojl = (1 — ¥o i)r{) + (1'6 'i)fo — (r6 'i)i

rPoi(g) = rP™i/ g + ... (—i0-§) (6.3)
We parameterize the photon trajectories as
X0 = X1 = §(cosf iy +sinfii,) ' (6.4)
where
k-d, =k-iy=d,-f=d,-r5' =0, |JiL|=lyl=1, and i -io 0. (6.5)

In words, 8 is the angle between x; and r8'°j’ , 6 is distance between the photon and the
string particle 0 = 0 at t = 0, fi| is the unit vector perpendicular to k and parallel to r5™/,
and i, is the unit vector perpendicular to both k and r§™’. The sign of fi, is determined
by the last equation except in the case when ¥y has no component perpendicular to both k
and r§™¥’, This ambiguity in sign of i will not lead to an ambiguity in the temperature
pattern. If sinf > O then the photon passes in front of the moving string, and if sinf < 0
then it passes in back. We do not consider the case where the photon passes through the
string, i.e. sin@ = 0. With this notation the integral (5.16) to lowest order in ¢ and 6 may
easily be performed. We require that the upper and lower limits of integration be sufficiently
small that the Taylor expansions used are good approximations in the interval in between.
If we denote the upper and lower limits of the integral by o+ and o~, respectively, then the
answer is

AT B { o )i [(Irp’°j'|a+ 6cos0|)2+52sin’a]
i

T - R Iro? (kB 1|0~ — 6 cos 8])2 + 625sin? @

s A -1 lropro'”|¢7+ —&bcosf - |r8'°“|a- — bcosl
(Fo-Biy) [tan ( Y] tan’ Fod )
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We are interested in the anisotropy pattern very close to the string and thus take the limits
(6/0*) — 04 and (6/0~) — O_ to obtain

proj |’
- rg | {(,-.0 -#i))ln

fim &8 = 4

im0 E . H Irh|?
The logarithmic term in equation (6.7) depends on the actual values of the limits chosen.
However it does not depend on either 6 or # and is just an additive term for all photons. One
can group this term with the contribution of the string far from the point in consideration
to the anisotropy at this point. The second term does depend on the photon trajectory but
only through the sign of sinf. The pattern very near a straight piece of string is thus a
constant temperature in front of the string and different temperature in back. The actual
temperatures depend on the what the string far from the segment in consideration are doing,
but the difference in temperatures depends only on the motion of the this segment. We may
simplify equation (6.7) with the following identities:

87| (o - A1) = o - (57 x K)| = |fo - (xb x K)),

k) ([fo|? — #o - k) (6.8)
(1—f0-K)]

Combining these identities with equation (6.7), one obtains for the temperature jump across
the string becomes

ot
o

+ x(fo - A l)sgn(sin 0)} . (6.7)

. . ' .
and B (ho ) = fro x| = BB

ATy — ATy _ . |Eo- (vh x k)|
T =8 =1E (6.9)

which is identical to (6.1). Thus the moving lens analysis for an infinite straight string in §II
faithfully gives the correct formula for temperature jump across any piece of string.

Anisotropy Pattern near a Kink

We parameterize the string near a kink exactly as we did in §V (see eq. 5.9). Without
loss of generality we consider a kink moving in the +o direction along the string and will
thus take v, = +1 in what follows. As in the previous subsection we expect that the parts
of the string very far from the kink may contribute a roughly constant temperature boost to
the region near the kink but will otherwise not effect the pattern. We need only consider the
temperature pattern at a given time. As the string evolves the temperature pattern around
the kink will continue to be of the form described here, but parameters may change. Very near
to the kink the string may be approximated by two straight segments: the segment, 0 < 0
(segment 1), corresponding to the string behind the kink, and the segment, o > 0 (segment
2), corresponding to the segment into which the kink is moving. For each straight segment
we may use the result (6.9), changing the subscript 0 to either 1 or 2 for the two segments
and adding the appropriate subscript to the angle §. Making this change of notation, taking
the limits (6/0+) — 0, and (6/0~) — O_, and using the identities (6.8), we obtain

'R 12 - #y - K Fo- () x Kk
ez=_4ﬁ[{(r1 Rl -hB) | 6 | (r,xk)l}_*_

T [ERr S T O e [ R T o0
L oRY(ea 12 — e L T Projs|_+ AR )
o B)hal b3 ) |8 * - xB)
(1 —#;-k)ry|? 6 2|
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 photon trajectory

segment 2

segment 1

FIGURE 2: Projection on the sky of the string near a kink. The meaning of the parameters &, 4,, and
08, for a specific photon trajectory is illustrated.
where 8, € (—x,7) and 8, € (0,27) (see Figure 2). If ¥, =¥, and r{ =r) then 6; = 6, and
we recover the result for a smooth piece of string, equation (6.9).
As in the previous subsection we may ignore the parts of equation (6.10) which do not

depend on the photon trajectory contributing only an additive constant boost to all photons.
Equation (6.10) becomes :

AT _ _4,.‘[ {(ra K)([F2? — i oK) (LK) (ff]? — 1 - K) } 1nl6]

T 1— ¥, -Kk)jr,|2 1 —¥, -k)r!|2
n( . )‘l)lz | f ’ )lﬂl o
fl'IIXk _ fQ'IZXk
T gE s T ]

The only relation between the segments 1 and 2 is equation (5.12), and from this we see
that the term in brackets in previous equation is not, in general, zero. Thus the pattern of
anisotropy around an kink consists of two parts. The first part depends logarithmically on the
impact parameter of the photon with respect to the kink. The coefficient of the logarithm may
have either sign. Formally as one looks closer and closer to the kink the MBR temperature
will diverge, although the divergence is not very strong. Of course, the analysis here is invalid
unless AT /T <« 1, and, as noted in §V kinks are expected to smooth themselves out. Formula
(6.10) will be valid for smoothed kinks when § is much larger than the scale of smoothing.
This logarithmic term will produce hotspots or coldspots on the MBR.
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photon trajectory

FIGURE 8: Projection on the sky of the string near a piece about to go through or just having gone
through a cusp. If we were looking during the time of the cusp, the parabola, which is the string,
would collapse to a semiline. The meaning of the parameters § and 8 for a specific photon trajectory is

illustrated. The direction of the arrow is the direction of r™i’ (see text).

The last two terms in equation (6.10) describe part of the pattern which depends on
the angular position of the photon around the kink and is divided into the contribution from
part 1 and part 2 of the string. This is contribution is described in Figure 2. The average
boost of the angular part is zero. It is interesting to note that by looking at the pattern of
anisotropy around a kink it is impossible to determine which way the kink is moving.

Anisotropy Pattern Near a Cusp

It was mentioned in §IV that loop trajectories will occasionally form cusps where the
string will not be smooth. At these isolated points x’ — 0 and |#| — 1. The analysis given
above regarding the discontinuity clearly cannot apply in this case because the string is not
smooth. However, as we approach the cusp in either space or time the string is smooth,
and the discontinuity diverges because the velocity of the string segment approaches the
speed of light. Thus we would expect very large anisotropies spatially or temporally near a
cusp. In this subsection we perform calculation to determine the pattern of anisotropy near
the projection of a cusp on the sky. Using the constraints (4.1-3) the trajectory of a string
spatially and temporally close to a cusp can be expanded as

1
r(o,t') =mt’ + §f°(t'2 +0%) +ipot’ +...  jha|=1 Fo-ta=0 Fh-m=0, (6.12)
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where 1 is a unit vector in the direction in which the particle at the tip of the cusp moves
at the speed of light. I have chosen the coordinates (o, x, t) such that the cusp occurs at
x = ¢ =t = 0. Unlike in the case of a smooth piece of string or a kink the nature of the
temperature pattern around a cusp will qualitatively change with the time of observation.
Using the notation of equation (3.26), 7 tells us the time at which the photons reach us.
Observation of the cusp at 7 < 0, 7 = 0, and 7 > 0 correspond to photons which passed the
string at times before, during, and after the cusp, respectively. To simplify the equation we

use r

FE—z 6.13
1-1-k (6.13)
instead of r. The function t'f,,, (o), expanded to second order in r and o is
- .i 2 ~2 2 Y .i ~
thax(0) =7+ (Fo k) (* + 7) + 206 Jof | 0(5%,5%%,672,7%). (6.14)

1-m-k

For fixed # # 0 and to second order in o the curve traced out by the string on the sky,
rP™, is a parabola. When 7 = 0, then the string develops a cusp and is not smooth. If we
reparameterize the string with

. e
Yo*Tp.

&(7) AT + 0(72) (6.15)

o+

then the string particle on the tip of the parabola has ¢ = 0. The curve traced out by the
string as a function of 7 is

. . . 1 < . .
TO . wPTOj Proj s~ Proj 11 ~2 ~2 proj: _projn __
Pl (g) =xf ) +r1g o+ 3o et + 0(6%) g™ .rg™" =0 (6.16)
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Thus the trajectory of the tip of the parabola for varying 7 is also a parabola. One can show
that

u=ug+0(8) w =1h-(h-kKk+O0(F). (6.17)
To parameterize the photon we use & and 0 defined by (see Figure 3)
. pProin yProi’ .
x; -1 =6 (lrg’”j m cosf + |l'§r°j'| sin 0) | §=|xL —rf™| (6.18)

We wish to calculate the photon boost in the limit of small § and ¥. Expanding the integrand
of (5.16) for small §, r, and & we find

,p ojn

(x_L —_ rPr°.|) Pl'o.l "l

Ix L P2 (6 cos 8 — [rB™i#]52)2 4 (§sin 6 — [rB°}/|5)2

_E(6cosf — G&?) + F (sind — H7G)
" (6cos® — G52)? + (5sind — H75)?

Bt (cosd — [15™]57) + 22 (5ind — [r5™01}5)
+ 0(0,6)

+0(s,7,96)

(6.19)
where

S -2-rz__-,-r'2'
E___r_ k G = [fol, H=\/|r°l Il'ollf | (Fo - ¥p)
()

)

and . o,

_ [Fol?(¥5 - k) — (Fo - ) (Fo - k)

[Fol/[Fo[?[#5{2 — (Fo - £5)?

For 6 = 7 = 6 = 0 the integrand diverges and for the § and 7 small, there is a region near
6 = 0 where the integrand is large. Away from this region the integrand falls off as 64
until & is so large that the approximations used to derive (6.19) is invalid. Approximating
the full integral (5.16) by the integral of (6.19) over the interval 6 € (—oo,+00) is a good
approximation as long as

6, T < |Fo]™ 1, [Fh| 1. | (6.20)
Thus as long as (6.20) is satisfied the anisoti'opy pattern near a cusp is approximately
AT . /+°°E(scoso—c:a2)+F(6sina—Hf& &5 (6.21)
T ~ —0o (6cosl— G52)2 + (6sind — HFG)? '

Unfortunately, as far as the author knows, this function cannot be integrated in terms of
simple functions. One may integrate (6.21) in terms of simple functions if one may ignore the
term Ho7. This approximation is equivalent to taking rg“i' = 0. The curve traced by the
string on the sky is thus approximated as a half-line and not a parabola. The approximation
is good if £y is nearly parallel or anti-parallel to ¢ or if |7| < 6. Thus this is appropriate
for any geometry very near the time one sees the actual cusp. Unfortunately this solution
does not tell us much about the temporal behavior of the amsotropy pattern, the result being
independent of 7. In this limit

V(1 - m-K)2[fo|2 — (o - K)?

o (6.22)

F—-+
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The sign depends on how ¥{, approaches either ¥; or —Fp. The temperature pattern then
approaches

_A_T 41r_, — 25 12 (5. .42 sind )
T \/_ \/W_ ( “fo - kv1—cosf £ /(1 —m - k)2|fo|? — (Fo - k) i)

(6.23)
The temperature pattern diverges as 6~ 1/2 as one approaches the tip of the cusp from any
direction. The angular dependence around the cusp consists of two terms. Both are zero on
the line segment § = x/2. The first term takes only one sign, going from zero to its extremal
value as @ goes from 7 to 0 or from 7 to 27. The second term is odd in 8 and discontinuous at
8 = 0, i.e. across the string. The magnitude of the discontinuity diverges as one approaches

the tip of the cusp, just as expected.

If the angular scale corresponding to |Fp|™! is much greater than the resolution of a
detector then the detector response near a cusp could be much greater than the signal near
other parts of the string. The effect is a much stronger than for the kink as the § —1/2 growth is
faster than Iné. Even thought the maximal temperature deviation diverges in (6.23), the area
integrated temperature remains finite. This is not due to cancellation, but rather is due to
the increasingly small angular areas covered by the increasingly large temperature deviations.
We see that cusps give only finite contributions to the r.m.s. temperature deviation. The
condition |#| < & for the validity of (6.23) and the form of (6.23) is evidence that the maximal
anisotropy goes as |¥|~1/2 in the general case, 7 # 0.

Warning

In the preceding subsections the anisotropy pattern very close to a piece of string was
considered. It is expected that the component of the MBR anisotropy that will dominate in
this case is the one that is being studied in this paper, i.e. that from the the sub-horizon
peculiar gravitational fields of the string. On larger scales both corrections due to the ex-
panding universe and from other sources of anisotropy will contribute. In what follows we
discuss aspects of the anisotropy without the restriction that one is looking very close to the
string. Thus it should be understood that we are only discussing the component of anisotropy
from the peculiar gravitational field of the loop, and that referring to the anisotropy pattern
within a horizon size of a loop. The smallest horizon size of interest is that at the redshift of
last scattering. If there were no significant reheating then this would take place at a 2 ~ 1000
and the associated angular scale would be ~ 0.5°. If reheating did occur then the surface of
last-scattering could only be moved to a lower redshift and the corresponding angular scale
be larger. Thus corrections due to expansion should only be important for angular scales
comparable to or larger than 0.5°.

Anisotropy Far From a Loop

We now consider the pattern of anisotropy very far from the loop. Far meaning those
photons which have impact parameters much greater than the loop size, but not so far as to
invalidate the small angle approximation. We choose the coordinates so that at ¢’ = O the
loop center-of-mass lies near the coordinate origin. As the temperature pattern away from
the loop obeys Laplace’s equation in two dimensions (see below) we may use the standard
expansion of solutions of the two-dimensional Laplace equation in circular coordinates. This
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infinite expansion converges to the correct pattern for |x) | > max, |r(0,t'5, . (0)|. The nth
term in the expansion falls off as |x, |~" and has sinusoidal angular dependence with period
27 /n. The first two terms have period 27 and 7 and will be referred to as the asymptotic
dipole pattern and the asymptotic quadrupole pattern, respectively. The dipole term, if non-
zero, will dominate for sufficiently large impact parameters. For the loops that we study
in §VII we have found that there exists ranges of impact parameters, |x, |, for which the
quadrupole term dominates. This has not been found to be true for the higher order terms.
We only explicitly write the dipole and quadrupole terms:

AT _[(xL-d 22 Qi
— = —4ji (F*L—l.;+—ﬁ4i+) (6.24)

where |
a=fude wd  Qy= fW e —u g o

For a loop with no net momentum, dimensional analysis suggests that the magnitude of the
dipole and quadrupole integrals should be ~ L and ~ L2, respectively, where L is the length
of the loop. For the specific cases studied below it was found that this is a large overestimate
for the dipole term but a reasonable estimate for the quadrupole term.

The asymptotic dipole temperature pattern very far from the loop has the same form
as the temperature pattern around a moving point mass (see §IV). Note that while for a
point mass the magnitude and direction of d is given by the momentum of the point mass,
this is not true for a loop. The direction and magnitude of the dipole pattern will, in general,
oscillate as the loop oscillates. (One exception which is unlikely to occur in practice is a loop
configuration that moves entirely in a plane perpendicular to the line of sight. In this case
the dipole pattern is the same as for a point mass with the same momentum as the loop and
the dipole vector is therefore constant in direction and magnitude.) The difference between
the point mass and the loop is that a loop has relativistic internal motion. The magnitude
of the oscillatory part of d is an observable measure of how relativistic the internal motions
of an object is.

Unresolved Loops

It will also be important to consider the contribution of loops much smaller than
the detector beam-size to the signal obtained by a detector. The relevant pattern is the
temperature pattern convolved with the beam. One might think that for a sufficiently large
beam with a loop near its center this is equivalent to the integral of the temperature pattern
of the loop over the entire sky. This turns out not to be quite true. The value of detector
response depends on exactly where the loop is placed with respect to the beam, even if the
loop is in a region where the detector response is flat. Consider a detector with a circularly
symmetric beam pattern B(f). If the angular size of the loop and the angular size of the
beam are both small then the detector response will be approximately proportional to the
integral of the brightness pattern over a disc in the x; plane. Let us put circular coordinates
on the x; plane with r = 0 at the beam center and let d; be the distance to the loop or, in a
cosmological setting, the angular diameter distance (see Weinberg 1972 Chapter 14 §4). The
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contribution the anisotropy pattern of a loop to the detector response is then

i d’x n T u-(xy —rProl)
bR = / l d} - f/ / |x, —rproi|2 d¢r dr do
i - (6.25)
= B "y, . pProj
3 f B( a Ju-xP™ do

First note that the response is independent of the beam pattern except at parts of the beam
that include the loop (This would not be true if the beam were not circularly symmetric).
Second notice that the response depends on the position of the beam center even if the
detector has flat response over the entire locus of the loop and to angles much larger than
the angular size of the loop. In general one expects unresolved sources to give a constant
signal independent of the beam center as long as they remain in the a part of the beam where
the sensitivity is constant. The reason that this is not true for loops is that the asymptotic
dipole pattern falls off sufficiently slowly with impact parameter that the “sidelobes” of this
pattern can dominate the signal from unresolved loops.

Now let us consider loops that are much smaller than the beam. Let rg be the distance
in the x1 plane of the loop from the beam center. If the loop is very small then rP™j will not
deviate much from ro and (6.25) becomes

6R = 4x B("°|)d o
l

(6.26)
where d is the dipole vector defined in the previous subsection. A given loop will give
the maximal signal not at the beam center but where |ro|B(|ro|/di) is maximized which is
generally about one beam-radius away from center. Furthermore note that the signal from a
very small loop scales with its mass (oc L « |d|) and not with its mass squared (which gives
the projected area of the loop). The sign of the signal depends on the relative orientation of
d and ro. If one had a random distribution of unresolved loops one would therefore expect
that the expected rms signal from this population would scale as square root of their angular
number density.

Laplace’s Equation
Given the expression, (5.16), for the temperature pattern on the sky one can easily
show that
2 AT ~ (2) roj
v —T—=—81ru u- Vy, 6%(x; —rP™)do. (6.27)

Thus the temperature pattern, except at points passing through a piece of string, will obey
the two-dimensional Laplace’s equation. This has several important consequences.

Several identities are known for solutions to Laplace’s equations which may be ex-
ploited to compute quantitative estimates of some aspects of the anisotropy expected from
strings easily. We shall leave this to the second paper and concentrate on the qualitative
consequences of (6.27). It is well known that solutions to Laplace’s equations have no local
maxima or minima except at boundaries. We thus know that there will be no local tempera-
ture maxima or minima except where the string is. It is also well known that the solutions to
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Laplace’s equation are fully determined by their boundary conditions. Thus we learn no ad-
ditional information about the loop configuration by measuring the anisotropy pattern away
from where we see the temperature jumps. If strings were discovered and we had low-noise,
high-resolution maps of the MBR temperature, then one could check whether the Laplace
equation was satisfied as a test of the theory. However, contamination by other sources of
anisotropy might make this difficult. Schemes may be discovered, using equation (6.27) and
the fact that only this component of the anisotropy produces temperature jumps, to subtract
off other components from the overall temperature pattern. However, since the boundary
condition for the Laplace equation must involve more than the temperature jump, this is not
straightforward.

Finally we bring to the attention of the reader a helpful analogy that can be made
between the formalism that we have developed here and two-dimensional electrostatics. First
note that equation (6.27) combined with the boundary conditions that AT'/T fall to zero far
from the loop is not merely a consequence of equation (5.16) but is completely equivalent
to the original formulation. Equation (6.27) is of the form of Poisson’s equation in two
dimensions. The source term being the sum of gradients of §-functions is equivalent to a sum
of idealized infinitesimal dipoles, i.e. two equal and opposite charges an infinitesimal distance
- apart such that the product of the charge times the separation is finite. The magnitude and
direction of the dipole moment is given by the vector u which depends among other things on
the velocity of the string at that point. The sum is, of course, the o integral and the dipoles
thus lie along the curve traced out by the string on the sky. The temperature pattern is the
same as the electrostatic potential produced by such a configuration of charges. With this
analogy we can easily understand the logarithmic term in anisotropy around a kink. Equation
(6.11) tells us that the temperature pattern around a kink has a component which depends
logarithmically on the magnitude of the impact parameter from the kink. The prefactor of
the logarithm depends on the component of u; and u; parallel to length of string segment 1
and 2, respectively. For a straight string of dipoles with uniform dipole density and direction
parallel to the string there is complete cancellation of charge except at the endpoints. At the
endpoint there is an isolated charge, which in two dimensions has a potential which depends
logarithmically on the distance from the endpoint. Thus the prefactor of the logarithm in
equation (6.11) is analogous to the sum of the endpoint charge on the two segments which
meet at the kink.

VII. THE SIMPLEST LOOP

It is apparent that equation (3.30) simplifies greatly if the loop configuration remains
in a plane which is perpendicular to the direction of photon propagation, k. In this case

-k, 7.k, and r' -k are all zero and S (o,t) = %ﬁ.. Furthermore, one may choose xo and the

spacetime coordinate system such that r - k is zero (ie. F-k = 0), so that ¢'2 . = 7 for all

parts of the string. With these simplifying assumptions equation (5.16) becomes

The relevance of this case is to planar loops seen face-on from a distance much greater than
the size of the loop, as discussed at the end of §III. If the planar loop is not moving then r will
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be periodic. The later form of equation (7.1) then tells us that at any given position in the
sky, x , the time averaged temperature deviation is zero. This follows from the fact that the
time of observation is just linearly related to 7. We would expect the loops that we observe
to be at random phases in their oscillations. It then follows that the expected temperature
deviation at any point (i.e. irrespective of the position of the loop) is zero. Of course, this
analysis only applies to flat face-on stationary loops. It is not true that at any given time
that the angle-averaged anisotropy is zero, as shall now be shown using a specific example.

The simplest possible loop configuration is a circular loops whose radius just oscillates.
Such a solution is given by equation (5.13) with a = 1 and ¢ = 0. Taking ¢ = 0, the loop
configuration is given by :

2nt! 2ro
r(o,t') = 2£1r cos(—L—) (cos(-L—) X+ sin(g%z) i) (7.2)
where we have taken the origin of coordinates to be the center of the circle. The radius of
the circle just oscillates sinusoidally, and 7 gives the time at which the observer sees the loop.
Such a configuration is somewhat unusual since the loop goes to a point once each period.
This type of singular behavior does not occur except for very symmetric loops and is therefore
not generic. If general relativistic effects were included, then such a loops would form a black
hole and not reexpand. Furthermore, the linear approximation to the gravitational fields
used in this paper would not be valid near the point singularity. Thus we would expect some
singular behavior in the boost of a photon passing near this singularity in space and time.
The behavior of photons passing near a singular point is not of general interest since it is
unlikely to occur in practice.

For the trajectory of equation (7.1) we must take k = =4 for equation (7.1) to be valid.
We will chose k = £, so the observer’s z coordinate has a large (compared with L) positive
value. We will parameterize xo by

X0 = Ry (cos¢ X +sing § — 7 &) E (7.3)

The geometry is circularly symmetric, so the boost of the photon should only depend R, and
not on ¢. One may perform the integral (7.1) analytically, obtaining

E T 0 R, > |cos (7.4)

AE AT | 8w tan 3—,—’:—' R., < |cos (%)I

T ()]
Thus the temperature pattern on the sky of the observer will be a circular “top hat”, and
there will be no temperature deviations outside of the projection of the loop. Note that the
temperature pattern only depends on rmod L/2 and not rmod L. This is because, as men-
tioned in §V, the actual period of the loop is half the period of the individual particles. It is
easily verified that the temperature discontinuity equation (6.1) is satisfied. The temperature
deviation inside the top hat diverges as the loop goes to a point. However, we see that the
signal received by a fixed beam-size detector would actually go to zero, because while the
temperature deviation is increasing the angular size of the top hat is decreasing faster. Of
course, a circular loop seen face-on, or any other flat face-on loop is a very special case. One
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should not expect any general properties of equation (7.1) to hold for all loops. This author
knows of no loop configuration other than flat face-on loops for which equation (5.16) may
be integrated in terms of simple functions. Thus the remainder of this paper is devoted to
numerical results.

VIII. ANISOTROPY AROUND A SINGLE LOOP

In this section are presented the results of numerical integrations of the anisotropy
around a single loop. The results presented here were obtained by integrating a spline fit
to the integrand. This spline fit was obtained by evaluations of the function on a grid of
points. The point spacing of the spline grid was variable, and the grid was chosen to give
finer spacing where the function was rapidly varying. In preliminary computations other
integration methods were used in which an error estimate was obtainable. It was found that
the spline method is generally good to within 1%. This is, however, not always the case.
Some problem occurs when the photon in consideration came very close to part of the loop,
in which case some parts of the integrand are extremely rapidly varying functions (see §VI).
The spline method was chosen because it was less prone to catastrophic failure in these cases,
although the accuracy at these points is not particularly good. There are, however, photon
trajectories for which the spline method, as implemented failed. These will be referred to as
“bad points”.

Photon trajectories were laid out on a 150 x 150 grid centered on the center of mass
of this loop. The length of each side of the grid is 37/4 times the length of the loop as
it is defined in equatiion (5.4). The fractional temperature boost was calculated for each
grid point to form an image of the temperature pattern near the loop on the sky. Each
image required ~ 3.5 cpu hours on a VAX 11/780 to compute the integrals. The images
are presented as halftones. The quality of the halftone plotter used is not particularly good,
there being significant variations in the boldness with which dots are printed on a given
page. To compensate for this, each image is displayed 3 times as a halftone plot, each with
different choices of saturation temperature. The three saturation points being the same for
all images. Here saturation means all black or all white. The values chosen are +5/, +15/,
and +454. This allows the reader both sufficient dynamic range to gauge the anisotropy for
all the images, and enough uniformity of presentation so the reader may compare different
images. For the loop configurations presented in this section about five “bad points” were
found in a typical image. Usually a bad point was found not to be next to another bad point.
In the figures some of these bad points are identifiable as points which are saturated either
positive or negative while the neighboring points are not.

The images computed are presented in Figure 4. For this figure we have restricted
ourself to one particular loop configuration seen from a particular angle and viewed at nine
different times during its oscillation. Note the anticorrelation between the size of the loop
and the magnitude of the anisotropy near the loop. This is expected because when the loop
is small, its parts are moving fast in order for the loop to reexpand. When the loop is near its
maximum size it is moving slowly so the tension of the loop will cause it to recollapse before
it gets much larger. In these plots the regions that are saturated are very pronounced. First
consider the regions that are saturated with temperatures deviating more the 454 from the
mean. There are very few such regions, the area of these regions being much less than the
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FIGURE 4: Temperature pattern around certain loop configurations. The three grayscale images on
the left of each figure represent the same temperature pattern but with a different relation between
temperature and dot density. These relations are indicated in the scale in the upper right corner. Outside
the limits of the scale the density of dots is saturated with either no dots or all the pixels being dotted.
The quantity x in the labels corresponds to the dimensionless quantity j in the text. Also on the left
is plotted the projection of the loop causing the anisotropy. Thin lines sticking out from the loop have
a length proportional to S, v which gives the magnitude of the discontinuity in temperature across the
string. The label at the top of this plot gives the normalisation. The temperature was computed on a
square array of points filling the box. Below the loop projection is plotted a histogram of the base 10
logarithm of the number of points in certain temperature bins. Lowest horizontal tick mark corresponds
to one point. Average temperature deviation is given below this, as is the rms deviation from sero. Loop
configurationa are those of eq. (5.9), the two parameters a and ¢ indicated in the figures. Orientation of
the loop is given by the angles 6, and 8; as follows: take the loop trajectory exactly as in eq. (5.9) with
the observer at asymptotic infinity along the positive z axis; rotate the loop an angle 8, in the z-y plane
from z to y about the origin; and then rotate the loop an angle 8, in the y-z plane from y to z. The third
Euler angle just rotates the loop in the plane of the sky and is unimportant. The patch of sky plotted
corresponds to photon trajectories in the +z direction with z and y coordinates less than 1.5. The phase
of the loop is given by ¢ and is chosen so that the photons pass through the z = 0 plane at ¢ = ¢.

mean projected area of the loop. There are larger regions saturated above 154 and, of course,
still larger regions saturated above 5ji. The area of the latter regions being comparable to
the mean projected size of the loop. Also presented in in Figure 4 is a histogram giving
the distribution of temperatures. In most cases the tails of the distribution looks roughly
exponential. While this falls off slower than a Gaussian, it is still fairly steep. Note, however,
the large difference in the histograms of different images. It is dangerous to draw general
conclusions from this one set of simulations, but, it seems reasonable to say that the anisotropy
near a loop is typically 5 — 10 i. However, placing a constraint on possible values of i from
these few simulations and observations of MBR isotropy would be going too far. In any case,
to obtain such constraints would require knowledge of the distribution of loop shapes and size
on the sky. To determine, this one requires the knowledge of the distribution of loop size in
the matter era. While the shape of the distribution and order of magnitude estimates of the
normalization are easily obtainable, a detailed result is not. While this is an area of current
research, no results are yet available.

IX. COMPARISON WITH PREVIOUS WORK

The aspect of MBR anisotropy examined in this paper has also been examined pre-
viously in the paper by Brandenberger, Albrecht, and Turok (1986). While they restricted
their analysis to gravity waves, the present work includes all components of the gravitational
field. They made some attempt to account for cosmological expansion while the present
paper includes no such effects. Their approach was rather heuristic, they merely used an
estimate for the amplitude and frequency of gravity waves at a given distance from a loop.
In this sense their work was much less precise than that given here. If one were to apply
their formalism to the case of photons passing by a loop with impact parameters much larger
the loop size but much smaller than the horizon size at the time they passed the loop, one
would conclude that the temperature perturbations given to the photons have no systematic
dependence on the impact parameter. In their analysis the temperature pattern only falls off
with increasing impact parameter due to cosmological effects which become important when
the impact parameter is comparable to the horizon size. This contradicts the results derived
in the present paper in which the temperature perturbation falls off at least as fast as the
inverse of the impact parameter without including cosmological effects. The source of the
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failure of their order-of-magnitude estimates are the cancellations discovered in §III of this
paper. Given their overestimation of the temperature fluctuations at large impact parame-
ters from a single loop, we must conclude that their subsequent estimates of the statistical
properties of anisotropy from an ensemble of loops is incorrect. In particular, their estimates
are too high. Calculations of the statistical properties of the microwave anisotropy using the
formalism developed in this paper is left to a subsequent paper.

X. SUMMARY

In this paper we have developed a formalism for calculating the microwave background
anisotropy from loops much smaller than the horizon. With this formalism calculating the
pattern of anisotropy around a given loop at a given time becomes a tractable numerical
problem. For each photon trajectory the calculation of the temperature boost is equivalent
to a one-dimensional integral over an implicitly defined function. The integral is essentially an
integral around the loop. In other words, the integrand may be interpreted as the contribution
of a given string particle to the anisotropy of the photon. This result for a string particle
is then a simple generalization of the result for a ballistically moving point mass which was
calculated using a totally different method by Birkinshaw and Gull (1982). It was also
shown that the formalism is-identical to a certain class of problems in electrostatics in two
dimensions. One may apply this formalism to a face-on circular loop obtaining the result
that the anisotropy pattern is a top hat. This is the only case where this author was able
to obtain the anisotropy pattern analytically. The discontinuity of temperature across the
string, which was first derived by Kaiser and Stebbins (1984) for an infinite straight string, is
generalized here to arbitrary string configurations. The pattern of anisotropy around kinks
and cusps was also examined. In both cases the temperature deviation becomes large. In the
case of kinks it grows only logarithmically with decreasing impact parameter with respect to
the cusp. In the case of cusps it grows as the inverse square root of the impact parameter
from the cusp. The pattern of anisotropy far from a loop is a dipole pattern which falls
off as the inverse of the impact parameter. This is the same result as for a moving point
mass. However, the amplitude of the dipole pattern for a loop is not an indication of the
total momentum as it is for a point mass. In fact, the amplitude and direction of the dipole
pattern will oscillate with the loop. A quadrupole usually dominates just outside the loop.
It was shown that the temperature pattern from the effect calculated here obeys the two-
dimensional Laplace equation. One consequence of this is that there will be no hot or cold
spots except in the direction of a piece of string. Finally, the pattern of anisotropies was
calculated for a few specific loop configurations. Typical anisotropies of 5 — 10/ near the
loop were found. The analysis here suggests that the work of Brandenberger, Albrecht, and
Turok (1986) with respect to MBR anisotropy is in error. Their estimates of MBR anisotropy
from gravitational waves emitted by loops is too large.

The next step is to try to apply the formalism to put limits on possible string param-
eters. As mentioned in the text this effort cannot go beyond rough estimates obtained by
previous authors without further progress in our understanding of the distribution of strings,
especially in the matter era. In a future paper we shall use the results derived here to deter-
mine the statistical properties of the anisotropy given the population of loops. Once this is
achieved the formalism here may be applied to give a precise interpretation to present and
future anisotropy measurements with regard to the existence of cosmic strings. The formal-
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ism presented here, however, can only tell us about subhorizon loops in front of the surface of
last scattering. The gravitational effects of superhorizon strings must also be calculated, and
this may be and is being done, in analogy with the analysis here (Veeraraghavan, Stebbins,
and Silk 1987). Of course, the traditional surface of last scattering effects may also be better

understood in the string scenario.
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APPENDIX A. PROOF OF CANCELLATION OF DIVERGENCES

It was shown in §III that in the formula (3.15) the contribution of and individual
particleto AE/E is divergent. We now derive an identity, a special case of which is equation
(3.20). This is sufficient to prove that the divergences of equation (3.17) cancel. The equation
of local energy-momentum conservation is

T8 B =0.
One may integrate the above over the plane n-x = r + w to obtain

/ [Tao,0(x, ') — Toi (%, 2)]6(r —u-x+ w) d®x = 0,

where u and w are independent of z and ¢. Evaluating this at ¢’ = 7 and then integrating
over all 7, we find

/[Tao,o(x,u X — w) — Toii(x,u-x— w)]d®x = 0.
Finally integrating by parts, we obtain

/ [Tao,0(X, 0 X — w) + 6T o(X,u - x — w)] d®x = 0. : (A1)

If the stress-energy tensor is expressed as, Tap(x,t') = 3°, Tgp(t’)ﬂ (®)(x — rP(t')), as it has
been above, then equation (A1) becomes

1[0 (Th() +w'Ti () _
Zm“r(r)[a( 1o () )],,=,,,—°- (42)

Here t'? is implicitly defined by
u-rP(t') =w : (A3)

and we shall assume that it exists for each p and is unique. The particle trajectories in which
we are interested exist for all times and have velocities less than the speed of light. If this
is true, then existence and uniqueness of 'Y is guaranteed if ju| < 1. A particular case of
equation (A2) is when u =k and w = k - Xo. In this case t£ will be equal to ¢/P,__ defined in
equation (3.12) which does exist for all p and is unique. If we then take the scaler product
of the resultant equation with the 4-vector k* = (l,i) and divide by 2 we obtain

1 [o (_sne) )

i

which is equation (3.18). Thus the divergent terms in equation (3.15) sum to zero. However,
these divergences would make numerical integrations of equation (3.15) impossible. One must
modify equation (3.15) to avoid these divergences altogether.
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